AD-A084 069

UNCLASSIFIED

OKLAHOMA UNIV NORMAN SCHOOL OF AEROSPACE MECHANICAL ==ETC F/6 11/4

VIBRATION OF COMPOSITE STRUCTURES. (U}
MAR 80 ¢ W BERT
OU=AMNE=80-6

NOOO14=78=C~0647
NL




Department of the Navy N el
OFFICE OF NAVAL RESEARCH

Structural Mechanics Program

Arli n, Virginia 22217

v LS L )
Contract{ NOO014-78-C-0647
Project NR 064-609
Technical Report No. 13

Py j , o s - H
Report OU-AMNE-80%6. | r . = |
~

N

/. VIBRATION OF COMPOSITE STRUCTURES ,

{

A\

by

'Charles N./éert

'/ March 1980

School of Aerospace, Mechanical and Nuclear Engineering
University of Oklahoma
Norman, Oklahoma 73019

Approved for public release; distribution unlimited

80 o 7 069 '~

Bt




et
3

VIBRATION OF COMPOSITE STRUCTURES

by

Charles W. Bert
1 Benjamin H. Perkinson Professor of Engineering
School of Aerospace, Mechanical and Nuclear Engineering
The University of Oklahoma
Norman, Oklahoma

An Invited Lecture to be presented at the International

Conference on Recent Advances in Structural Dynamics at

the Institute of Sound and Vibration Research, University

R

of Southampton, Southampton, England, July 7-11, 1980.

E ol




VIBRATION OF COMPOSITE STRUCTURES
Charles W. Bert

School of Aerospace, Mechanical and Nuclear Zngineering
The University of Oklahoma

1. MINTRODUCTION

The purpose of this paper is to review some of the recent contributions to
the field of vibracion of composite structures. The topics of fatrigue and frac-
ture, wnile quite important in the ovarall dynamic performance of composite
structures, are not considerad in this survev.

The survey treats these topics: dynamic stiffness and damping of composite
raterials, beams and curved bars and rings, flat panels, and cylindrically curved
panels and shells. It concludes with some suggestions for future research.

/

2. DYNAMIC STIFENESS AND DAMPING QF COMPOSITE MATERIALS

2.1 Sctiffness of Unidirec:ional#ﬁibggfgeinforced Material -

Qﬂ It is well established that fiber-reinforced composite materials, by virtue
of the geometry of the rfibers acting as stiffeners, behave macroscopically like
nomogeneous but anisotropic materials. The class of elastic symmetry depends
upoa the geometric arrangement of the fibers (Table 1).

Table 1. Effect of Fiber Aréangement on Elastic
Symmetry of Unidirectional Composites

Arrangement of Fibers Practical

in Cross Section Zxamples Class of Elastic Svametr:
Verv-small-diameter fibers lass/resin, Transversely isotropic (isotropic
packed statistically iso- graphite/resin in fiber cross-sectional plane)
tropically

texagonally packed £fibers Same Same

Fibers arranged in a single 3oron/epoxy Orthetropic with planes of sym-
row or in a rectangular tape metry intersectirg in the fiber
array direction and directions of rows

and columns of Iibers

Assuming linear stress-strain behavior, the generalized Hooke's law mayv he
written in compliance matrix form, using contracted notation, as follows:

JisLs (L

T, : LT

s Je . Tas,T%2
LS1seves3Tg “T1197225333

(e
]




Here 244 % normal scrain,
and shear stress.

£ engineering shear strain, J;; = normal stress,

. Tij
Tl] =

For the orthotropic case, the compliance matrix takes the form

S11 81z Sz 0 0 o |
S12 S22 S23 o 0
Si3 S23 S33 o 0
[533 = 1o 0 0 su, 0 o (3
0 0 0 0 Sg5 O
[0 0 0 0 0 Sg_

For the case of transverse isotropy, with the 23 plane as the plane of iso-
tropv, array (3) takes the following special form: S;3 = Si;z2, S22 = S3»,
Syuu = 2(Sy;=-512) and Sg5 = Sg5-

Equation (1) can be inverted to obtain the 3-D stiffness form as follows:

‘:U-"a[c ]:‘.. (4)

Here, the Cy; are the three-dimensional Cauchy stiffness coefficients. Although
equation (l) is applicable to one=-, two-, or three-dimensional stress systems,
equation (3) is applicable only in the case of 3-D stress svstems. In the case
of a relatively chin member, it is often acceptable to neglect the effect of
thickness normal stress (353), thea equation (1) is inverted to obtain the
following expression

{ci} = [q.. ]z, (3

where the Qj: are the plane-stress reduced stiffnesses which are related to the
three~dimensional Cauchy stiffnesses as follows:

Qiy = Cy4 - (C13cj3/C33

) (6)
All of the above elastic coefficients (S ij» Cis, and QiJ) can be related to

rhe so-called engineering coefficients, Xoung s moduli Ej, Polsson's ratios syt

and shear moduli GLJ, see, for example, L‘,-,BJ -

[ T

Iz is noted that both the compliance [:.,J and stiffness ([C. j4 or LQl D
matrices are symmetric as a consequence of conServacion of strain eqergv as was
first shown very elegantly by George Green in the early 18C0's. This reduces the
number of independent elastic coefficients in every case. It is emphasized that
in writing all of the preceding equations the stresses, strains, and elastic co-
efficients are all related to material~syvmmetry axes, i.e., axes formed by the
intersection of mutually perpendicular planes of symmetry. In a unidirectional-
fiber-reinforced composite, one axis is obviously the fiber direction.

If one wishes to exprass the stresses, strains, or elastic coefficients
with respect to an orthogonal coordinate svstem oriented with its z axis in line
with direction x:, with its x,y axes oriented at an angle 2 with respect to the
X;, %X, axes, standard tensor relations can be used to obtain appropriate trans-

formation equations [1,2,3]. Then

The bar denctes that the quancity 1is relarted to the (x,y,z) coordinate svstem.
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It is noted that in the array of equation (7), certain of the coefficients
(Cig, Cz6, and Cys) that were identically zero in the orthotropic case, equation
(3), are no longer zero. Thus,

S11 512 513 0 Sys
S12 S22 Sa3 S26
[gij] - |S13 523 i3 o S35 (8)
0 0 0 3§, 35,0 0O
0 0 0 545 555 O
_§1a S5 S3 0 0 §ea_

The number of non-zero coefficients has increased from 12 to 20 and the number
of independent ones has increased from 9 to 13. The elastic symmetry class re-
4 presented by equation (8) is called monoclinic. In other words, a material that
is orthotropic with respect to symmetry axes 1,2,3 behaves like a monoclinic
material with respect to axes x,y,z as defined above.

Table 2 summarizes the various symmetry classes c¢f importance in fiber-
reinforced composite materials.

Table 2. Summary of Selected Elastic Symmertry Classes

o

Symmectry Total No. of Non-Zero No. of Independent
E lass Elastic Coefficiants Elastic Coefficients

Three~Dimensional-Stress Cases:

General anisotropic 36 21
Monoclinic : 20 13
Orthotropic 12 9
Transversely isotropic ' i2 5
Isocropic 12 2
Plane-Strass Cases:
General anisotropic =
monoclinic (symm. about x 3=0) S 6
?
Orthotropic (= transversely i
isotropic in xyx3 plane) 5 4 :
Transversely isotropic in
X:%X; plane (= isotropic) 5 2

2.2 Stiffness of Laminates

To obtain certain cesired combinations of properties, such as stiffnesses
and strengths, it is usually necessary to arrange individual layers (scmetimes
called laminae) of fiber-reinforced composite materials to form a multi-laver
laminate. It is conceptually possible to treat structural elements constructed
of laminates by applving che relations of three-dimensional z=lastodynamics to
each individual layer in conjunction with appropriate contiauity and boundary
conditions. However, the resulting analvsis is conceptually so complicated that
it {8 not practical teo carry out except in a few verv special cases. To avoid

! this complexitv, it is the usual engineering practice to make certain hypotheses
regarding the kinematics of deformation and then <o work with stiffnesses which
are integrated through the thickness.




The simplest kinematic assumption is the Bernoulli-Euler one for slender
beams (or the Kirchhoff-Love one for thin plates or shells): plane sections re-
main plane and normal to the deflected middle surface during deformation, and
undergo no thickness stretching. In view of the low shear modulus of most com-
posite matarials relative to their in-plane elastic moduli, it is more accurate
to use the Bresse~Timoshenko hypotnesis [4,5] for beams (or the Reissner-Mindlin
one (6,7] for plates and shells). In this hypothesis, it is assumed that plane
sections remain plane but not necessarily normal to the deflected middle surface
and suffer no thickness stretching. Thus, the additional deflection due to
thickness-shear deformation is accounted for in an approximate sense. Mathe-
matically

u(x,y,2) = u (x,y) + 23 (x,y) :
w(x,y,z) = wO(x’Y) €))
v(x,y,2) = v _(x,y) + 28 (x,y)

Here u,v are displacements in the x,y directions; w is the normal deflection;
UgsVgsWo are the middle-surface displacements in the x,v,z directions; ( )’x = 1
3( )/3x; 34 and 3, are the bending slopes and differ from the total slopes Sy
the respective shear strains. Using equations (9) in the equations of linear
elasticity theory, one gets

ai(x,y,z) = g¥(x,y) + 2z, (x v) (i=1,2,6) (10)

a
i

Here ¢? are the mid-plane stretching and shearing strains and <; are the bending
and twisting curvatures.

Now the stress resultants and stress couples are related to the correspond-

ing stress components as follows for a flat laminate (plate): T
h/9
\ [.'n/h - fh/Z - .
N, = 3, dz (i=1,2,6) ; Q, = 5, dz (i=4,5)
i j_h/z i i J-h/2 i
(11
"h/z ~
Mi = 20, dz (i=1,2,6)
‘<h/2

Here N; are in-plane forces per unit width, Q; are thickness shear forces per
unit widch, M; are bending or twisting moments per unit width, and h is the t
total lamlnate thickness.

Substituting equations (5) and (10) in equations (1l) and performing the
integrations, one obtains the following laminated plate constitutive relations:

N FOUE- SO I I
__i- = _i_‘]-: _i_J_ __J_ (i,jal,z,é)
h/S B.. D, R
1 131715 | 3 (12)
(Qgr = [a; 0 (1,3=4,5)

Here the Afj (i,j=1,2,6) are in-plane (stretching and shearing) stiffnesses, A,,

(i,j=4,5) are thickness-shear stiffnesses, Bi, are in-plane/out-of-plane coupl‘ﬁg

stiffnesses, and Di; are out-of-plane (bending and twisting) stiffnesses given
i by:

¢ —




(i’j=l92»6)

n
2 1 . 3.3 (=(d)
Dy J 2°Qy dz =3 1 (2, = 2-0%;
A, = k. Q,, dz = k.k 2 (z, -2, )q'¥ (i,3=4,5)
S I B & P38 UL T

Here index ¢ refers to the 1-th layer, n 3 total number of layers, z._, and z.
are z-coordinate positions of the top and bottom surfaces of the typical laver
2, and the ki are the shear-correction coefficients to account Zor the nonlirear
distribution of the thickness shear strains through the total thickness.

The basic difference between the theories of Refs. [8] and [9] is that the
former defined the plate stiffnesses (Aj;, etc.) on the basis of the three-
dimensional material stiffness coefficieats (Cy3) while the latter definad them
in terms of the Qij as in equations (13). Wang and Chou [10] showed that the
latter approach giVves more accurate results even for relatively thick plates.

There is a nearly unlimited number of combinations of laver orientations
possible in a laminate. Table 3 lists commonly used lamination arrangements
censisting of multiple plies all having the same thickness and of idencical
composite material (except for orientation).

Table 3. Characteristics of Some Commonly Used Lamination Arrzngements

(isotropic Aij only)

lavers at 0,3%;,2¢;,
3¢1,...(N-1)¢;, where
3,=180"/%, N 2 no. of
different orienta-

tions (integer > 3)

Agg=(l-v) a/2), A z=d:2=)

i

Laminat2 Name Description Stiffness Characteriscics Ref
Aligned parallel-ply  All layers ac 0° A1g=A253D:g=Dsg=all 3ij=0 f13
Off-axis parallel-ply all layers at 3 All By;=0 [11]
Symmetric cross-ply Alternating 0° & 90° 4,;=4-:=D.:=D-~z=all B, =0 03,11,

layers; n=oc = 12]
Antisymmetric Alternating 0° & 90° A;z=A-:=D:5=D-2=0; 3-.=-3:-; {3,11,
cross-ply layers; n=even remainder of Bij-O 12
Symmetric regular Alternating +3 & -&  All B4,=0; A;3,425,0:5,0:2: {3,11,
angle-ply lavers; n=odd decrease as n is increased 12]
Antisymmetric regu-~ Alternating +2 & -9  Aj5=A35=B) ;=B ;=B..=Bg¢= [3,11,
lar angle-ply layers; n=even Dis=D;¢=0 12]
Svmmetric balanced Center 2 plies at 3; Ajsz=Ajg=all Bij-O; D:5 and [13]
angle-ply remainder alter- Dog decrease as n is

nating +2 & -3; increased

n=even
Quasi-isotropic One or more sets of  A;;=A--~=A, Aj-=u4, [3,11]




2.3 Stiffness of Composites with Different Behavior in Tension and Compression

Analysis of materials having different stress-strain relatioms in tension
and compression dates back to Saint-Venant (1864); see [14]. Examples of mate-
rials which have been found to demonstrate this behavior include various cords
and fabric embedded in rubber, sintered metal, and certain biological materials
Elé]. Modern treatment of the topic dates from the 1965 work of Ambartsumyan
{15], in which he instituted the concept of a bimodulus model for isotropic
materials with different properties in tension and compression. This concept
was later generalized to anisotropic material by the present investigator [16,
17] using a fiber-governed symmetric elastic model which was found to agree well
with experimental results for cord/rubber.

In the fiber-governed symmetric elastic model [16,17], it is assumed tha=
there is a complete array of stiffnesses which govern when the fiber-direction
strain (cf) is tensile and another complete array when it is compressive. That
is, for a thin laminate, the plane-stress reduced stiffness matrix is

if =, > 0

¥

[a s

(Q; 4,1
[o 4,1 if

(ogj0d = (14)

<0

m

(o]}

Here the index k refers to either the tensile (k=1) or compressive (k=2) set of
stiffnesses.

For a beam, plate, or shell undergoing bending, the locus of points at
which =0 is called the neutral surface. In an ordinary (not bimodulus) mate-
rial, the neutral-surface locaticn is not especially important. However, in a
bimodulus material, its location is crucial, and in general it does not coincide
with the middle surface for such materials. Thus, even a single layer of bi-
modulus material exhibits bending-stretching coupling (anmalogous to an unsym-
metrically laminated laminate), except when the magnitude of the middle~surface
strain in the fiber direction exceeds the bending strain. In the latter excep-
tion, a bimodulus material acts no differently than an ordinary one.

Depending upon the structural configuration, boundary conditions, and
loading, even in a single-layer plate, the neutral surface in general is no
horizontal plame. Since the layer properties (Qi;y) depend upon the sign o
(and thus upon the neutral-surface position) and the plate stiffnesses (a;.:,
31‘»Dij) upon the Qjjyx as in equations (13), it is clear that in general 3" bi-
moéulus plate is nonhomogeneous in its plane, i.e., che plate stiffnesses de-
pend upon position (x,y) in the plane [18]. However, unlike a plate with taper-
ing thickness, here the plate stiffnesses are not even known & priori. This
situation is reminiscent of the elastoplastic bending problem, for which the

~

elastoplastic boundary is not known & priori.

t a
£z

t

2.4 Damping of Filamentarv Composites and Laminates

Although there are enumerable mathematical models which have been preposed
to describe internal-friction in materials [19], by far the most widely used is
the Ximball-Lovell model [20]. This model assumed that the energy dissipated is
proportional to the square of the amplitude but independent of frequency. In the
case of sinusoidal excitation, it is convenient to apply this model by replacing
the elastic stiffnesses (Qij) of a perfectly elastic material by the complex
stiffnesses (Qij) defined by

= R I

= 4+ 1 ,l-
Qij Aij lQij (13)




T

Wity R Y

Here 1 = V=1, Qin = real (storage) component of stiffness, and Qi-I : imaginary
(loss) component. Although, as discussed in [Zl], there are consicerable dif-
ficulties in applying the complex-stiffness approach to nonsinusoidally excited
systems, no alternative proposed to date appears to offer much promise, wizh the
possible exception of the fractiomal-derivative approach originated by Caputo and
recently applied to isotropic adhesive material ty Bagley and Torvik [27].
Preliminary attempts to apply this model to boron--epoxy have not been success-
ful.

The pioneering work in analysis of damping in fiber-reinfiorced composi:te
materials was due to Hashin [23], using the elastic-viscoelastic correspondence
principle. Unfortunately, this approach requires explicit exprassions for the
elastic stiffnesses, and such expressions are generally not sufficiently accu-
rate for transverse and shear stiffnesses (Q;»> and Qgz). These iimitations were
removed in [24], a complete characterization of boron/epoxy.

A variety of experimentcal techniques have been used to experimentally
characterize the dynamic stiffness and damping of composite materials. Refer-
ence [25] discussed the free vibration, pulse propagation, and forced vibratorw
response methods. Selected recent sources of experimental data for various
filamentary composites are listed in Table 4.

Table 4. Selected Sources of Experimental Data on Damping
of Fiber-Reinforced Composite Materials

Fiber Material Fiber Form Matrix Material Ref.
Glass Continuous Epoxy 26,27
Boron Continuous Epoxry 28,29
Graphice Continuous Zpoxy 28,30
Glass Short Polyester 31
Aramid Woven cloch Polvester 32

3. BEAMS, CURVED BARS, AND RINGS
Reference [33] surveyed the static behavior of such structurzl elements
and discussed 25 pertinent references through 1973. Here emphasis is placed on

the structural dynamics aspects.

3.1 Straight Beams of Anisotropic Material

For analyzing the lower flexural modes of straight beams made of ortho-
tropic material (aligned fiber-reinforced composite material), the dvnamic
version of the simple Bernoulli~Euler type theory is adequate. Of course, the
appropriate Young's modulus (the longitudinal one) must be used in defining the
flexural rigidity.

Since composite materials typically have much lower ratios of shear modulus
to Young's modulus than homogeneous isotropic materials, they usually exhibit
zore transverse shearing action than isotropic materials. In the aligned (crtho-
tropic) case, one may use the equations of Braesse-Timoshenko beam theory [4,5],
provided that one uses the the appropriate elastic moduli: longitudinal Young's
modulus for E and the appropriace (thickness shear or in-plane shear) shear
modulus for G. aApparently this approach was used for orthotropic beams first by
Vowinski [34] and later by others .35-36].

To improve the dyvnamic analrsis of orthotropic beams still further, i: is,
Jf course, necessary to use a threa-dimensional elastodvnamic appreach. Such a

e ]
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procedure was used, for example, by Ohnabe and Nowinski [37], whno extended the
Pochammer-Chree equations of isotropic elastodynamics to the cylindrically
orthotropic case.

For beams made of off-axis or nonaligned fiber-reinforced material (i.e.,
general anisotropic matrerial), there is an elastic coupling between the flex-
ural and twiscing actions. This was analvzed by Lekhnitskii [2], secrions 27
and 28, for the static case. Apparently the first dvnamic analysis including
this coupling was Abarcar and Cunniff's 1972 analysis [38], who combined 3resse~
Timoshenko beam theory with Lekhnitskii's flexural-torsional coupling theorv.
They formulatad the problem as one in Myklestad's transfer-matrix theorvy [39]
Further experimental and transfer-matrix analyses were carried out by Ritchie
et al. [40-41]. Later Miller and Adams [42] obtaired a purely analyrical solu- ’
tion for a theory based on Bernoulli-Euler beam theory rather than the Bresse-
Timoshenko one.

Recently Teoh and Huang [43] presented a closed-form solution for frae 3
vibrations of 3resse-Timoshenko-Lakhnitskii beams and Teh and Huang [44] ana-
lyzed the same problem using finite elements based on an energyv formulation.
Most receacly Wallace and Bert [45] extended the transfer-matrix approach to
include Kimball-Lovell material damping. At a considerable saving in compu-
tational zime, thev were able to predict all but the pure ''plate mcdes" and
associated frequencies and damping factors for a wide beam previously investi- 1
gated experimentally [46] and analytically [47].

Mindlin [48] presented a three-dimensional dynamic analvsis of the low-
frequency modes of anisotropic elastic bars of arbitraryv cross secticn and

applied it to bars with elliptic, triangular, and rectangular cross sections.

3.2 Laminatad and Sandwich Straicht 3eams

A laminated beam is one having two or more layers, with all lavers of the
same thickness but of different materials (or fiber orientacions). In contrast
a sandwich beam is one having one (or more) thick, fiexible core and twe (or
wore) thin, sctiff facings. A simple sandwich has one core betweesn two facings,
while a multicore sandwich ("club sandwich') has more than cne core sandwiched
between more than two facings [49]. Actually a multilayer beam with constrained
viscoelastic layers can be considered to be a multicore sandwich.

lthough laminated beams are simpler in geometry than laminated plates,
relatively few vibrational analyses of this configuration have appeared in the
recent literature, exemplified by [50-34].

Since there is a voluminous literature on the linear analysis of ZIree and
sinusoidally forced vibration of simple sandwich beams (much of the early work
was reviewed in [53]), attention here is focused on the literature of the past
eight vears with particular attention to various complexities. The effects of
concentrated masses were investigated in [36-57], while Ref. [38] considered the
effect of local shearing prevention, such as that occurring due to the presence
of rivets near the ends. The effects of various loadings have been investigated;
these included impacc [59], moving force svstems [60], and flutter [61]. Hyver
et al. [62] investigated the effect of geometric nonlinearity, both analyticallr
and experimentally.

The effects of a variety of configuration parameters on sandwich-beam
vibration have been studied. Sandman [63] considered the effects of segmenting,
i.e., discrete changes in stiffness and mass along the length of the beam, while
D.K. Rao and Stuhler [64] investigated the effect of a smoothly tapering cross
section. The presence of pre-twist, as in an aerodynamic surface such as a
compressor blade, was shown dv D.X. Rao [65] to result in drastic reduction of
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the effective loss factor for the firs: flexural mode. An unsymmetric sandwich
is one which does not have mid-plane symmetry. Vibrational analyvses of unswm-
metric sandwich beams having different top and bottom facings were presented bv
Yan and Dowell [66], Y.V.K.S. Rao and Nakra [67], and by D.K. Rao [68-59].
Reference [69] also included the effect of multiple cores. Y.V.X.$. Rao [70]
analyzed an unsvmmetric sandwich beam that he called a dual-core sandwich con-
figuration; it consisted of two different core materials (back~to-back) sand-
wiched between only two facings.

3.3 Curved Beams and Rings

The governing equations of motion for curved beams and rings are identi-
cal; the difference comes in via the boundary conditions. A curved beam or
arch has specified boundary conditions at each end, while a ring must have a
solution which is circumferentially continuous, i.a., periodic in the circum-
ferential angular position. Although there have been many vibrational analyses
of arches, curved beams, and rings, apparently the only one strictly applicable
to a composite rting is [71]. It treated free vibration of an orthotropic-
matarial thick ring subjected to steady cenctrifugel loading, supported by con-
tinuous radial elastic support, and included zransverse shear deformation. Th
application was a hoop-wound rim-tvpe flywheel for automotive energy-storage
applications.

There have been a few dynamic analyses of curved sandwich beams and rings.
Ahmed [72] performed a finite-element analysis of a curved beam. References
[73-75] analvzed the steady-state dyvnamic response of damped sandwich rings,
while Sagartz [ 76~77] considered the transient response.

4. FLAT PANELS (PLATIES)

Since publication of Leissa's comprehensive moncgraph [ 78] on free vidra-
tion of plates in general, there have been a number of review articles [33,76-81,
wnich surveved the vibration of composite-material and sandwich slates. Thus,
in the interests of brevity, only a few verv racent developments not discussed
in the above references are considered here.

4,1 Plates of Anisotropic Material

Linear analyses included the following: for orthotropic rectangular
plates, Wilson [82] considered the response to moving loads, while for free
vibration of anisotropic rectangular plates sublectad to in-plane forces, Laura
and Luisoni [83] presented a Ritz-tvpe sclution with a polvnomial approximating
function. Reference [84] considered moderately thick rectangular plates of bi-
modulus orthotropic material. Reference [85] discussed the application of a
combination of the finite-strip method with the deflection-ccntour method and
obtained reasonably good results for an orthotropic square plate.

Linear analyses of cvlindrically orthotropic plates included a power-series
solution of a spinning annular plate with simply supported reinforcing beams at
both edges [86], finite~element and time-averaged hclographic investigations of
annular plates [87), and a spline-function Ritz analvsis of plates having a
sector planform [38].

Nonlinear analyses with gecmetric nonlinearity included two papers on
orthotropic, moderately thick, rectangular plates [89-90]. Also there was a
recent nonlinear analysis of anisotrcpic skew (parallelogram) plates [91].

4,2 Laminated Plates of Anisotronic Material

There have been relativelv few analyses of laminated plates, since the




latest survey [81]. Rao and Singh [92] presented an optimal desizn svathesis
procedure to design rectangular plates of minimum weight subject to contraints
on natural frequencies. A finite-element analysis including thickness~shezr
flexibility was developed 5y Reddy [93] and compared with various results in
the literature. Crawlevy [94] reported extensive experimental results for
cantilever rectangular plactes of graphite/epoxy and graphite/epoxy~aluminum and
comparad the resulcs with moderately thick finite-element predictionms.
Chatterjee and Xulkarni [95] analyzed flutter of moderatalv thick recranguiar
panels of damped, laminated composite materials.

Elishakoff and Stavsky [96] analyzed vibration of laminated cvlindrically
orthotropic circular annular plates.

5. CYLINDRICALLY CURVED PANELS AND CCMPLETE CYLINDERS

This area has been surveyed in Leissa's comprahensive morograph [97] on

free vibration of shells in general and in a aumber of review articles (33,98,
S . . . : . .. -
99 on vibracion of composite-material shells. Heres, in the interests cf

brevityv, only cylindrical shells, either cylindrically curved panels or circuz-
ferentially complate cyvlinders, ars reviewed. Emphasis is piacad on work
carried out frem 1973 to the present.

oy

It should be recalled that fcr plates there are primarily two classes ¢
analvses (linear and nonlinear), three kinematic situations (3-D, mcderatelr
thick, or thin), and two material-geometry cases (single-laver/svmretricallw
laminated, and arbitrarily laminated). 1In the case of shells, there is a auch
greater variety in the Xinematic situations. The hierarchy of shell theories,
frca most accurate to least accurate (which mav be either with or without
thickness~shear and thickness-normal action)[100] is:

1) Exact theoryv, like the Langhaar-3orassi checry

2) Second-approximation thecries, like Leove's second-approximation
theory, Flugge's and Yovozhilov's

3) Firsc~approximation theories, such as Love's first appreoximacion
theory, and the increasingly popular Sanders theory

4) Morley's shallow-shell theory

5) Domnell's very-shallow-shall theorw

The selection of an appropriate theorv depends upon the method of soluzion.
For example, if a whole-shell analytical method is used for a compiete shell,
the Donnell and Morley theories may not bte sufficientlv accurate for pradicting

che frequencies of the lower circumferential modes. On che other hand, if the
shell is discretized incto many small regions, each of which is individually verv
shallow, then the Morlev or Domnell theory mayv be entirely adequate and the
complexity of the more elaborate theories may not be justified.

5.1 Shells of Anisotropic Material

Since this theory is relatively simple, especiallv for first-approximation
or simpler theory and crthotropic material, recant emphasis has been on ccmpli-
cating effects.

Babu and Reddy (101] presented one oI the relacively few analvses cf
cylindrical panels. Fortier [102] considerad the effect of external pressura on
cvlindrical panel vibration. Dvm [103] investizaced the effect of this same
loading on complete cvlinders, while Penzes and Xraus ([ 104] alsa added the
effeccs of torsiom, axial force, and rotation about the axis (centrifugal load-
ing). Xuptsov [105] considered the effact of centrifugal loading due to rota-
tion about a shell diameter at one end of the shell. The effects of internal
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irrotational flow [106-107], external flow [108], and internal swirling flow
{109-110] on ortnocropic pipelines have been analvzed, as have the effects of
random boundary-layer internal-pressure fields [111].

In one of the relatively few analvses of nonlinear vibration of a shell of
nonlinear anisotropic material, Shahinpoer [112] analyzed a thin tube of
Ericksen-Rivlin material. The large~ampli:tude (geometricallv nonlinear) vibra-
tions of an orthotropic cylindrical shell with axially rtapering thickness was
recently investigated by Ramachandran (113].

Concerning moderately thick orthotropic shells, the work of Warburton and
Soni [114] on harmonically excited vibrarion, including material camping, is one
of the most extensive. Mangrum and Burns [115] considered the effect of a dis-
continuous pressura loading moving at constant axial velocitv. Jain [116]
analyzed the vibration of a vertical cylinder partially filled with fluid, while
Shvers and Marchuk [117] considered a pipe with an internally flowing fluid.

All of the work just mentioned was limited to orcthotropic material. One
of a few vibrational investigations of anisotropic (monoclinic) cvlindrical
shells of moderately thick walls was recently reportad in [llS]. The analvsis
was formulated in terms of a higher-order shell theorv which ratained some of
the exact kinematic features of the Langhaar-Boresi shell theory and vet in-~
cluded thickness-shear deformation as in Reissner-Naghdi theory. The predicted
natural frequencies were found to agree reasonably well with experimencallv
determined ones for a cvlinder of unidirectional material oriented at 30
degrees to the axis of the cylinder.

5.2 laminated and Sandwich Shells

The effects of several different boundary conditions on free vibrations of
laminated, circular cylindrical shells were investigated analvtically bv Abhat
and Wilcox [119] and Fortier and Rossettos [120]. Reference [119] is particuiar-
ly interesting in that it incroduced a new, improved method of reducing the
general eighth~order shell frequency determinant to a fourth-order cne. The re-
sults obtained using this method are considerablv more accurate than those 0b-
tained by Yu's reduction method [1217. 1Ia [119] the new method was applied o
cross~ply shells with either clamped or freely supported ends. In [120], four
different edge conditions were considered for both cross-ply and angle-niv lami-
nates. In [122], four differenc boundarvy conditions were investigated experi-
mentally.

In one of the relatively scarce analyses of noncircular laminated cvlinér
:al shells, Noor [123] applied the so-called multi-local method, whizh is a var
ation of the Hermitian difference technique. Optimization problemsrelating to
vibration of laminated anisotropic circular cylindrical shells were investigated
in [124-125].

A number of investigators considered the effects of various kinds of ex-
ternal loadings on free vibration of laminated cvlindrical shelis. References
[126] and [127] considered external pressure; Padovan [128] included pressure,
axial load, torague, and centrifugal and Coriolis forces.

Berger [129] analyzed the vibraticns of an infinitely long, lavered ortho-
tropic cylindrical shell in an acoustic medium. Muggeridge and Bucklev [130]
carried out analytical and experimertal investigations on syvmmetric balanced
angle-ply cylinders in a fluid. °

There nave been a number of analvses of moderately thick circular cylindri-
heils, i.e., those with thickness-shear flexibility explicitlwv includesd.
er and Rossetzos [131] considered shallow cvlindricaliv curved panels of
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cross-ply lamination. Sinha and A.K. Rath [132] considered the same geometry
subject to free vibration and buckling. B.X. Rath and Das [133] analyzed cross-
ply laminated complete cylindrical shells by three shell theories: a refined

4 1t

moderately thick-shell theory, 'classical" thin-shell theory (love's first
approximation), and Donnell's thin-shell theory.

Sun and Whitney [134] presented a theory for moderatelvy thick laminated
cylindrical shells. This theory was applied by C.T. Sun and P.W. Sun [135-136]
to several cases of suddenly applied loading, using classical separation of
variables and the Mindlin-Goodman technique.

Various applications of the finite-element technique have been made to
moderately thick, laminated, circular cylindrical shells. Shivakumar and Murty
[137] developed a ring-type element with sixteen degrees of fIreedom. Crawley
[94] compared FEM and experimental results. Bradford and Dong [138] devised a
refined element, in which a number of elements through the thickness comprise a
laminate,and applied it to shells under initial stress.

There have been relatively few three-dimensional elastodvnamic analvses of
laminated cylinders. Two examples of such analyses are those of Srinivas [13%]
and Muiholland and Gupta [140].

Recently the activity in vibration of sandwich shells has diminished in
comparison to its vitality in the 1960's. However, one should mention the
theoretical and experimental investigations by Harari and Sandman [141-142] on
sandwich shells with graphite/epoxy facings and the nonlinear parametric vibra-
tion analysis of Popev et al. [143].

5. SUGGESTIONS FOR FUTURE RESEARCH

The author believes that the following needs are most pressing in the
areas covered by this survey.

1. More realistic mathematical modeling of material behavior is urgencly
needed. This includes such effects as marerial damping, stress-strain non-
linearity in shear, diifferent behavior in tension and compression, and effects
of temperature, humidity, and material damage on the stiffness properties.
Experimental verification of tne improved models is also of importance.

2. Means for more realistic incorporation of practically important local~
ized discontinuities should be developed. These factors include local doublars
and edge reianforcements, access ports and other cutouts, and attached localized
rmnasses.

3. A comprehensive and comparative assessment of the numerous laminated
shell theories presently available is sorely needed. The goal should be to
determine the simplest theory necessary for practical engineering calculation
of the structural dynamic response of composite shell structures.

4. Development of reasonably general design data to guide the structural
designer in application of composites in dynamically loaded structures is mest
urgently needed.
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